
1

The Individual Tax Processing Engine
Project Is Making Progress

September 14, 2020

Reference Number: 2020-20-062

This report has cleared the Treasury Inspector General for Tax Administration disclosure review process and information
determined to be restricted from public release has been redacted from this document.

To report fraud, waste, or abuse, please call us at 1-800-366-4484

TIGTACommunications@tigta.treas.gov | www.treasury.gov/tigta | 202-622-6500

TREASURY INSPECTOR GENERAL FOR TAX ADMINISTRATION

mailto:TIGTACommunications@tigta.treas.gov
http://www.treasury.gov/tigta

HIGHLIGHTS: The Individual Tax Processing
Engine Project Is Making Progress

Final Audit Report issued on September 14, 2020
Reference Number 2020-20-062

Why TIGTA Did This Audit

The Customer Account Data
Engine 2 Program, chartered in
2009, is one of the most complex
modernization programs in the
Federal Government and involves
major changes to core IRS tax
processing systems. This audit
was initiated to determine
whether the IRS is effectively and
efficiently managing the
Customer Account Data Engine 2
program’s Individual Tax
Processing Engine project with a
focus on velocity estimates and
development.

Impact on Taxpayers

The IRS Integrated Modernization
Business Plan states that a key
project supporting the Customer
Account Data Engine 2 is the
Individual Tax Processing Engine
project, which will convert lines of
legacy Assembly Language Code
to Java, a modern software
language. This code conversion is
a major milestone towards
retiring the Individual Master File.

The Customer Account Data
Engine 2 is intended to provide
state-of-the-art individual
taxpayer account processing as
well as data-centric technologies
to improve service to taxpayers.
However, deployment delays and
cost overruns can decrease
stakeholder and public
confidence in the IRS’s ability to
develop, monitor, and use its
resources effectively to deliver
improved taxpayer services.

What TIGTA Found

The primary goal of the Individual Tax Processing Engine project is to
reengineer the Individual Master File, written in an old programming
language (Assembly Language Code), into a modern programming
language (Java). The IRS implemented a scenario-based approach
for Java code development. TIGTA determined that this is an
effective approach given the size and complexity of the Individual
Master File.

The IRS is effectively monitoring the progress of the Individual Tax
Processing Engine project. Project planning meetings, project
monitoring meetings, and Integrated Project Team meetings occur at
regular intervals. The Integrated Project Team meetings are intended
to discuss project status, hot topics, and next steps. The results of
these meetings are documented. In addition, comparisons of
planned work versus actual work completed are reported weekly. As
a result of their monitoring efforts, IRS management has identified
and mitigated development challenges. For example, the IRS
approved additional resources to increase project velocity (i.e., how
much work can be completed in each product increment iteration)
and extended the project’s schedule to compensate for the time lost
during the Government Shutdown.

The IRS is using a Trajectory Model to estimate the planned velocity
goals of the project and to track whether the goals are met. An
updated Trajectory Model was used in September 2019 and will be
updated approximately every seven and a half months. In our next
review, TIGTA will fully analyze the effectiveness of the updated
Trajectory Model.

The IRS developed Java code that complied with documented
guidelines for the Java declaration and statement standards and are
applied in the 58 files reviewed. The IRS developed Java code that
generally conforms to industry best practices, but some best
practices were not followed. For example, Java code files contained
lines in excess of 100 characters, files are longer than 2,000 lines, and
opening comments are incomplete or missing. According to the IRS,
these deviations from best practices do not affect the quality of the
code or runtime, but future maintenance could be inefficient.

What TIGTA Recommended

TIGTA made no recommendations as a result of the work performed
during this audit.

U.S. DEPARTMENT OF THE TREASURY
WASHINGTON, D.C. 20220

TREASURY INSPECTOR GENERAL
FOR TAX ADMINISTRATION

September 14, 2020

MEMORANDUM FOR: COMMISSIONER OF INTERNAL REVENUE

FROM: Michael E. McKenney
 Deputy Inspector General for Audit

SUBJECT: Final Audit Report – The Individual Tax Processing Engine Project Is

Making Progress (Audit # 202020015)

This report presents the results of our review to determine whether the Internal Revenue Service
(IRS) is effectively and efficiently managing the Customer Account Data Engine 2 program’s
Individual Tax Processing Engine project with a focus on velocity estimates and development.
This review is part of our Fiscal Year 2020 Annual Audit Plan and addresses the major
management and performance challenge of Modernizing IRS Operations.

Management’s complete response to the draft report is included as Appendix V.

Copies of this report are also being sent to the IRS managers affected by the report. If you have
any questions, please contact me or Danny R. Verneuille, Assistant Inspector General for Audit
(Security and Information Technology Services).

The Individual Tax Processing Engine Project Is Making Progress

Table of Contents

Background ...Page 1

Results of Review ...Page 3

A Scenario-Based Approach Was Adopted ...Page 3

The Individual Tax Processing Engine Project Is Effectively
Monitored ...Page 4

An Updated Process Is Used to Measure Project ProgressPage 7

Java Code Generally Aligns With Industry Best PracticesPage 12

Appendices
Appendix I – Detailed Objective, Scope, and MethodologyPage 14

Appendix II – Evolution of Individual Tax Processing Engine VelocityPage 15

Appendix III – Velocity Confidence Milestones and Actual
Lines of Code Completed ...Page 16

Appendix IV – Additional Information on Key Data for
Updating the Trajectory Model ...Page 17

Appendix V – Management’s Response to the Draft Report...............................Page 18

Appendix VI – Glossary of Terms ...Page 19

Appendix VII – Abbreviations ..Page 21

Page 1

The Individual Tax Processing Engine Project Is Making Progress

Background
The Customer Account Data Engine (CADE) 2 Program, chartered in 2009, is one of the most
complex modernization programs in the Federal Government and involves major changes to
core Internal Revenue Service (IRS) tax processing systems. CADE 2 is a relational database1 that
contains data from the Individual Master File (IMF) and is intended to provide state-of-the-art
individual taxpayer account processing as well as data-centric technologies to improve service
to taxpayers. In order to limit risk and demonstrate incremental progress toward the target
solution, the IRS created transition states. CADE 2 is currently progressing through the largest
and most critical transition state: Transition State 2. The primary goal of Transition State 2 is to
reengineer the IMF, written in an old programming language called Assembly Language Code
(ALC), into a modern programming language (Java2). In April 2016, the IRS chartered the
CADE 2 Individual Tax Processing Engine (ITPE) project to update the programming language to
Java.

The ITPE project is critical to migrating IMF core programs to Java. It can take years for ALC
developers to become proficient in understanding the business logic of the unique IMF core
processing programs. In addition, ALC has limited capabilities as a programming language, and
maintaining the IMF is difficult because of the decreasing number of ALC programmers
available. The ITPE project will help address these issues by updating the code to Java.
Comparatively, Java will provide a platform for future development and improved
maintainability of the IMF code, and Java programmers are widely available. This is a
modernization effort with the intent of maintaining all current functionality and capabilities.

At the outset of the CADE 2 Program, the IRS did not have an existing capability or commercially
available product to convert ALC to Java. Converting ALC to Java is a highly complex process
because there are fundamental differences between the two programming languages. ALC is a
low-level programming language that is one step up from machine language (e.g., a string of
0’s and 1’s that represent instructions understood by a computer). ALC contains few
recognizable human words and uses mnemonic code3 so that programmers do not have to
memorize or look up instructions for every numerical string of code. In addition, low-level
programming languages are used to write programs that relate to the specific architecture and
hardware of a particular type of computer. In this case, the IMF uses a mainframe architecture
that runs ALC programs in operation since Calendar Year 1963. Conversely, Java is a high-level
programming language that is written with words and phrases which are close to human
language. Programming languages are considered high-level because they are far removed
from the machine code instructions understood by the computer. High-level programming
languages create programs that are portable across platforms and are not tied to a particular
computer or architecture. As a result, programmers using high-level programming languages
like Java are not required to be knowledgeable of the hardware architecture.

In Calendar Year 2014, the IRS began work on an in-house automated method called the
Auto-Translator Tool (ATT) to translate the IMF’s ALC into Java. The ATT extracts ALC business
and logical functions and data by scanning and parsing the source lines of code (LOC) and

1 See Appendix VI for a glossary of terms.
2 Java is an IRS-wide development preference.
3 Widely used in computer programming to specify instructions.

Page 2

The Individual Tax Processing Engine Project Is Making Progress

identifying how the data are stored in physical memory. The tool also analyzes the structure of
ALC to provide useful statistics, such as the well-formed subroutines and the number of
self-modified code for certain patterns. The ATT also provides information to the Java Runtime
Environment. The ATT converts ALC execution logic into Technical Rules Language by
identifying patterns in the source code and converting these patterns into Java. The tool also
uses a byte-for-byte comparison approach to verify that the Java code will produce the same
outcome as the ALC code. The IRS planned to use the ATT as the method to convert ALC into
Java for IMF Runs 12 and 15.4 The new Java applications will take the same inputs and outputs
as ALC IMF for these processing runs.

Beginning in February 2015, the Information Technology organization’s Applications
Development and Enterprise Services functions initiated a joint effort to explore the capabilities
of the ATT and its methodology. They selected and translated a portion of the IMF ALC code
using the ATT to determine the level of effort required for migrating to Java with this tool.

Between October 2015 and July 2017, the IRS performed three assessments (two external and
one internal) of the ALC to Java conversion effort using the ATT. The combined results of these
assessments led the IRS to the project strategy used today.

• In October 2015, the MITRE Corporation completed the first assessment. One of its
three key findings was that the ATT will not achieve the performance requirements
needed to meet the project schedule. The MITRE Corporation also stated that the ATT
will replicate the legacy data structures and nonmodular program design of the ALC
instead of using the full capabilities of Java, resulting in unmaintainable and
unnecessarily complex Java. A third finding was that the converted Java code does not
adequately capture business rules in the legacy code.

• In December 2016, the Applications Development function completed the second
assessment of the ATT internally. The IRS reported two issues related to the ATT’s
converted code for IMF Run 12. First, the ATT-generated Java code was more complex
than the original ALC or standard Java. In addition, continued use of the ATT would
require developers to learn IBM mainframe architecture, thereby diminishing one of the
main benefits of converting the legacy ALC code to a modern, high-level programming
language.

• In July 2017, Deloitte completed the third assessment of the ATT. Deloitte
recommended that the IRS change direction from implementing the translated Java
code into production and instead use the translated code produced by the ATT as an
input tool.

In September 2017, the IRS decided not to implement the ATT’s translated Java code. Instead,
the IRS implemented a scenario-based approach that is a five-step process for Java code
development. The process begins with the identification of real-world IMF business scenarios
(e.g., tax assessment, payment, and adjustments). These scenarios are used to identify pieces of
code functionality, or Building Blocks, to be incrementally designed, developed, and tested.

4 These programs perform the core IMF business functions of Posting, Settlement, and Analysis, and are the most
complex IMF programs.

Page 3

The Individual Tax Processing Engine Project Is Making Progress

Results of Review

A Scenario-Based Approach Was Adopted

In September 2017, the IRS documented its scenario-based approach to convert legacy ALC to
Java. This approach uses business scenarios based on IMF business transactions to
incrementally implement IMF functionality into an end-to-end solution. This process will
implement a common Data Access Layer and align to the target state architecture. The Java
code produced by the ATT was repurposed as an input to the scenario-based approach.
Figure 1 outlines the IRS’s scenario-based approach for the ITPE project.

Figure 1: Overview of the Scenario-Based Approach

Source: CADE 2 and ITPE Overview, dated July 17, 2019. IRE = IMF Reverse Engineering.

In July 2019, we met with the ITPE project team for an overview of the project. IRS management
stated that they were moving forward with a scenario-based approach for IMF Runs 12 and 15,
which are the bulk of tax processing logic. The purpose of using the scenario-based approach is
to facilitate the iterative delivery of the ITPE project and improve workflow. We also performed
research to determine if other approaches for converting ALC to Java should be considered. We
found one example of a private sector company successfully converting ALC to Java. However,

Page 4

The Individual Tax Processing Engine Project Is Making Progress

the scope of the conversion was 10,000 LOC total. By comparison, IMF Runs 12 and 15 alone
have approximately 146,000 active LOC. Overall, the IMF has approximately 961,000 LOC total.
We determined that the scenario-based approach is effective for the ITPE project given the size
and complexity of the IMF. We also found this approach was consistent with the Internal
Revenue Manual (IRM)5 Agile path development guidance, which includes high-level feature
definitions and allows for repetitive cycles of development and testing for a product or new
solution.

The Individual Tax Processing Engine Project Is Effectively Monitored

The ITPE project is broken down into 24 product increments. Each product increment is
comprised of five two-week sprints, totaling 10 weeks in duration. The IRS held various
meetings to plan and monitor the ITPE project during each product increment. Planning
meetings occurred at the beginning of each product increment as well as at the beginning of
each of the five sprints. Monitoring meetings occurred at various frequencies. Figure 2 provides
an overview of the process for monitoring and measuring progress.

Figure 2: Overview of the Process for Monitoring ITPE Progress

Source: Provided by ITPE Project Management on January 15, 2020. AD = Applications Development;
IBM = International Business Machines.

5 IRM 2.16.1, Enterprise Life Cycle (Nov. 26, 2019).

Page 5

The Individual Tax Processing Engine Project Is Making Progress

During our audit, we attended the Product Increment-11 planning meetings. The meetings
started with a group session to discuss Product Increment-10 accomplishments and Product
Increment-11 overall objectives. Next, the different functional teams (e.g., testing, ALC
conversion teams, architects) met separately to discuss their specific Product Increment-11
objectives. At the end of the individual functional team sessions, the planning outcomes were
documented and included the objectives and risks identified by each team.

In addition, ITPE Integrated Project Team meetings are held every two weeks. The meeting
participants include a broader audience than those listed in Figure 2 (e.g., the Cybersecurity
function and the Wage and Investment Division’s Modernization, Tools, and Technologies
function). The purpose of the Integrated Project Team meetings is to discuss project status, hot
topics, and next steps. Meeting minutes and a presentation deck are prepared for each
Integrated Project Team meeting.

As a result of their ongoing monitoring efforts, IRS management identified the following
challenges:

• Insufficient Backlog of Building Blocks. A bottleneck occurred due to an insufficiently
established backlog of Building Blocks, i.e., identified pieces of code with common
functionality, for design and development. An insufficient backlog prevents the
architects from providing complete designs to the development teams. This decreases
development velocity and increases refactoring. In addition, the development end date
did not initially include the work for the Technical Framework. Examples of items
included in the Technical Framework are Technical Enablers and the Data Access Layer.
The Data Access Layer is calculated based on input and output files. However, the exact
percentage that the Data Access Layer makes up of the overall Technical Framework was
unknown.

• Insufficient Resources. A limited knowledge of the project complexity led to a limited
knowledge of the skillsets needed to complete the project. In addition to identifying the
requisite skillsets, the ITPE project also needed additional human resources in order to
increase project velocity. In December 2018, the project obtained approval to add
two conversion teams.6 However, the ITPE project received resources to add four new
conversion teams. Currently, new Conversion teams 5, 6, 7, and 8 are staffed with 13, 12,
7, and 8 people, respectively. Team members are shifted as needed to fill specific needs,
usually at the beginning of a product increment.

• Implementing Tax Cuts and Jobs Act of 2017.7 This extended the schedule by
two product increments (five months) because the Act included wider and deeper
changes to the IMF code, resulting in a larger-than-normal 2019 Filing Season update to
the IMF and, subsequently, the ITPE-related code.

• Government Shutdown (December 2018 through late January 2019). This delayed the
onboarding of new personnel resources, which extended the schedule by two product
increments (five months).

6 Responsibilities include converting ALC to Java code.
7 Pub. L. No. 115-97. Officially known as “An act to provide for reconciliation pursuant to titles II and V of the
concurrent resolution on the budget for Fiscal Year 2018.”

Page 6

The Individual Tax Processing Engine Project Is Making Progress

• Coronavirus Aid, Relief, and Economic Security Act.8 The IRS identified a risk that if
key resources are lost over an extended period of time, the velocity of ALC to Java
conversion and testing will be affected and the ITPE project development will not be
completed by September 2022. Eight resources were diverted to Act-related activities.
The IRS stated that it made adjustments to the Trajectory Model to account for the
15 percent loss of productivity and that using the backlog of Building Blocks resulted in
no impact to the development end date.

To address the ITPE project velocity challenges,9 management implemented the following
actions:

• Revised the scope of Product Increment-8 from the ALC conversion to focus on building
a sufficient backlog of Building Blocks ready for development in Product Increment-9,
developing Technical Enablers, and training new resources.

• Received approval for 40 additional resources (30 IRS employees and 10 contractors) in
December 2018. The additional resources were used to staff the two new conversion
teams and to fill skill gaps in the four existing conversion teams.

• Added four product increments in Fiscal Year 2019.

• Streamlined processes in order to reduce overhead (e.g., reducing the number of
meetings for team leads).

• Restructured the teams, thereby increasing collaboration between code development
and logic harvesting.

• Held three CADE 2 ITPE Acceleration Summits. The purpose of the summits were to
create a forum to build a higher level of trust across organizations and to identify and
review updates on ITPE velocity bottlenecks and potential solutions to address them.
These summits resulted in action-oriented plans to evaluate and implement solutions.

Identifying and mitigating risks and issues are part of managing and monitoring the project.
The ITPE Project Management Plan states that project managers are responsible for tracking,
monitoring, and reporting risks and issues. The ITPE project team documents risks and issues in
the ITPE Integrated Project Team meeting documents and participates in the CADE 2 Program
Risk Reviews, which also manages ITPE risks and issues. When warranted, risks and issues were
also reported in the Item Tracking Reporting and Control system. For example, on
May 22, 2018, Risk Number 29934 was submitted because the Applications Development
function had not maintained a working pace that would ensure that it completed the ALC to
Java conversion in time to perform parallel validation in Fiscal Year 2021. On November 6, 2018,
it was elevated to an issue because the project continued to miss the velocity targets.

The IRM states that Agile development projects like the ITPE project should prepare reports at
the end of each sprint to summarize the progress made, obtain feedback and approvals from
stakeholders, and adjust planning for subsequent iterations. It also requires projects to
establish reasonable plans for managing development projects and performing engineering
tasks. In addition, the ITPE Project Management Plan10states that management is responsible

8 Pub. L. No. 116-136, 134 Stat. 281.
9 See Appendix II for the Evolution of ITPE Velocity over time that describes the challenges addressed to improve ITPE
project velocity.
10 IRS, Project Management Plan for ITPE, Version 2 (Aug. 7, 2018).

Page 7

The Individual Tax Processing Engine Project Is Making Progress

for ensuring that all elements of the project are monitored and controlled and that information
management requirements are satisfied. According to the plan, this will be accomplished by
monitoring the actual performance and progress of the project against the planned baselines
for scope, schedule, and cost. When performance deviates from the plan, management will take
appropriate corrective actions, including escalation or revising the plan, estimates, and schedule,
as defined by the approving authority. Management is also responsible for monitoring risks and
issues according to the organizational risk management and contingency management
procedures.

Generally, we found that the IRS is effectively monitoring the progress of the ITPE project. We
reached this conclusion by attending project meetings, reviewing minutes and reports, and
tracking the project’s progress during our audit. We also assessed ITPE project monitoring
against IRM and agency directives.11

An Updated Process Is Used to Measure Project Progress

The IRS has taken steps to improve the process for estimating the development time required to
convert LOC from ALC to Java. At the outset of the ITPE project, the IRS identified the
complexity of the IMF ALC containing several irregular coding conventions that do not exist in
modern programming languages as a constraint. CADE 2 management stated that when they
established initial development estimates in Fiscal Year 2017, the level of effort required to
develop the ITPE scope was unknown.

The IRS chose LOC as the method to estimate the size of the ITPE development effort. There are
146,000 LOC to convert plus 68,000 LOC-equivalents for Technical Enablers, totaling
214,000 LOC for the entire ITPE project. To measure the progress throughout Fiscal Year 2019,
the IRS identified four Confidence Milestones to measure overall project health. The IRS stated
that velocity was the most significant of the Fiscal Year 2019 Confidence Milestones because it
provided insight into the ALC to Java LOC conversion velocity, a major quantifiable metric. Due
to the velocity challenges that the project faced, the ITPE project did not achieve the Velocity
Confidence Milestones for Product Increments 2 through 8.12 The Confidence Milestones were
discontinued for Fiscal Year 2020. However, the IRS continued to monitor the ITPE velocity by
comparing planned LOC work to actual work completed.

In April 2019, the IRS stated that it established an initial Trajectory Model to track and monitor
velocity metrics, but it did not account for all work to be completed. In August 2019, the
CADE 2 Program Management Office worked with a contractor to create the CADE 2 Program
Management Office Trajectory Model (hereafter, references to the Trajectory Model refer to this
one). In September 2019, the CADE 2 Program Management Office used data from Product
Increments 6, 7, and 8 to update the Trajectory Model to project the ALC LOC conversion for
each product increment, starting with Product Increment-9. Because of the extensive analysis to
account for the ITPE project’s complexity and capturing all work required, the updated
Trajectory Model determined that the development end date for ITPE moved from August 2021
to September 2022.

11 IRM 2.5.1, Systems Development (Sept. 1, 2006).
12 See Appendix III for the Velocity Confidence Milestones and the actual LOC converted for Product Increment-1
through Product Increment-8.

Page 8

The Individual Tax Processing Engine Project Is Making Progress

To ensure that the Trajectory Model is in sync with how development is operating and to give
the most precise projections, the Trajectory Model is updated after the completion of every
third product increment, a period of approximately seven and a half months.13 Routine updates
include:

• Validating the current resource list and skill level.

• Validating the assumptions outlined in the Trajectory Model based on data from
the product increments.

• Including actual outcomes from each product increment.

• Identifying whether there are process changes that occurred that need to be
incorporated into the Trajectory Model.

Other inputs to the Trajectory Model include total ALC LOC and LOC-equivalents for Technical
Enablers. In addition, numerous assumptions are made to further estimate the project
trajectory. Some examples of these assumptions are percent reduction in productivity for
coaching, percent reduction in productivity for correcting defects, filing season LOC-equivalents,
and vacations, leave, and holidays. Figure 3 provides more information about the methodology
and data used to update the Trajectory Model.

13 Calculated by dividing 30 weeks (three product increments times 10 weeks) by four weeks per month which equals
approximately seven and a half months.

Page 9

The Individual Tax Processing Engine Project Is Making Progress

Figure 3: Key Data for Updating the Trajectory Model

Source: Provided by ITPE Project Management on February 21, 2020.14

In weekly reports to IRS executives, the CADE 2: ITPE Weekly Executive Update compares the
actual work completed to both the Enterprise Program Management Office and Applications
Development function planned work estimates. IRS management explained that the Enterprise
Program Management Office estimate is determined by the Trajectory Model and is the
minimum work needed to meet the revised September 2022 development end date. The
Applications Development sprint teams set goals for themselves during the product increment
and sprint planning based on multiple factors. They are encouraged to set challenging goals,
and those numbers become the Applications Development function’s targets for the product
increment. When reporting these metrics to the Chief Information Officer, the actual numbers
are compared against the Enterprise Program Management Office estimates. Figure 4 provides
an example of how this information is reported for the LOC conversion and Building Block
development work performed during Product Increment-12.

14 Additional information about updating the Trajectory Model is included in Appendix IV.

Page 10

The Individual Tax Processing Engine Project Is Making Progress

Figure 4: Comparison of Planned Estimates of LOC Conversion and
Building Blocks to Actual Work Completed During Product Increment-12

Source: CADE 2: ITPE Weekly Executive Update dated June 11, 2020. AD = Applications Development;
BB = Building Block; PI = Product Increment; EPMO = Enterprise Program Management Office.

By comparison, Figure 5 shows the overall cumulative planned and actual work for the ITPE LOC
conversion development as of June 10, 2020. For tracking purposes, the Enterprise Program
Management Office cumulative planned work of 57,808 LOC is included in the graph on the
orange line. The Applications Development function cumulative planned work of 67,302 LOC
appears in a box within the graph. As of June 10, 2020, the cumulative total actually completed
is 68,184 LOC (47 percent of the overall ITPE project).

Page 11

The Individual Tax Processing Engine Project Is Making Progress

Figure 5: Cumulative ALC LOC Development Status for Runs 12 and 15

Source: Provided by the CADE 2 Program Management Office on August 5, 2020. BB = Building Block;
EPMO = Enterprise Program Management Office; AD = Applications Development;
PMO = Program Management Office.

We determined that the IRS’s current estimation process incorporates Government
Accountability Office best practices15 to estimate the duration of the ITPE project and velocity
rate. For example, the Government Accountability Office states that estimators should
understand interdependencies that affect the schedule. Some examples of interdependencies
are staff availability, effective work hours per shift, and downtime from meetings, travel, and
sickness. The Trajectory Model accounts for these interdependencies and many more, such as
staff skill level (e.g., beginner, intermediate, advanced) and project role (e.g., developer, design
architect, test); percent reduction in productivity for coaching; percent reduction in productivity
for correcting defects; and filing season LOC-equivalents. The Government Accountability
Office also states that scheduling is complicated, and the more complex the software
development effort is, the harder it will be to find the right staff for the job.

According to the Agile Practice Guide,16 it can take four to eight iterations to achieve a stable
and predictable project velocity. Due to the complexity of the ITPE project and the mix of
experience levels, it may take three product increments for the teams to complete work at a
stable velocity. The IRS can adjust the time period for updating the Trajectory Model once this
stability has been achieved. The next update to the Trajectory Model was initially scheduled to

15 Government Accountability Office, GAO-09-3SP, Cost Estimating and Assessment Guide: Best Practices for
Developing and Managing Capital Program Costs (Mar. 2009).
16 Project Management Institute, Inc., Agile Practice Guide (2017)

Page 12

The Individual Tax Processing Engine Project Is Making Progress

be completed by April 6, 2020, after the end of Product Increment-11.17 However, the update
was postponed and rescheduled for the first week in June 2020 because the IRS wanted to
update the Trajectory Model with the final data from Produce Increment-12, which did not end
until June 9, 2020. On June 11, 2020, the IRS met with us and provided the updated Trajectory
Model. In our next review, we will fully analyze the effectiveness of the updated Trajectory
Model.

The Government Accountability Office guidance states that estimating software size is not easy
and depends on having a detailed knowledge about a program’s functions in terms of scope,
complexity, and interactions. We found that the IRS has documented the scope of the ITPE
project’s complexity and has taken interactions into account with its scenario-based approach.
Frequent reporting based on LOC converted will inform management of any roadblocks and
will better inform Trajectory Model updates when tracking project velocity.

Java Code Generally Aligns With Industry Best Practices

The IRS provided 235 Java class files so we could review the new ITPE code. We reviewed a
judgmental sample18 of 58 (25 percent) Java class files, totaling approximately 42,000 LOC, and
found that 48 (83 percent) of the 58 files had lines in excess of 100 characters. We also found
that five (9 percent) of the 58 files contained more than 2,000 lines. In addition, every file
reviewed had incomplete or missing opening comments. A detailed comment review
determined that all files did not consistently use the beginning comments section of the code as
outlined by the IRM.19 In our sample review of Java files, we identified 14 files (24 percent) that
had a blank comment field with no information. One file (2 percent) had beginning comments
with no date or class name listed. Two files (3 percent) had beginning comments that were
lacking a class name, version, and date entry. Lastly, 58 files (100 percent) contained beginning
comments that did not include a class name. All the files we reviewed did, however, comply
with guidelines for Java declaration standards and Java statement standards. Figure 6
summarizes the results from our Java code analysis.

Figure 6: Assessment of Java Code Sample

Files
reviewed

Files With Lines
Longer Than 100

Characters

Files Longer
Than 2,000

Lines

Files With Missing
or Incomplete

Comments

Declaration
Controls
Followed

Statement
Controls
Followed

58 48 (83%) 5 (9%) 58 (100%) Yes Yes

Source: Auditor assessment of Java files as part of the ITPE development process.

The IRM states that Java declaration standards are described for consistent code creation. The
IRM also documents various Java statement standards to ensure consistent creation and logic
flows. In addition, the IRM outlines standards for the format and use of Java exceptions,
acceptable naming conventions, and best practices, all with the goal of creating uniform and

17 Product Increment-11 began on January 22, 2020, and ended on March 31, 2020.
18 A judgmental sample is a nonprobability sample, the results of which cannot be used to project to the population.
19 IRM 2.5.3, Systems Development, Programming and Source Code Standards (Mar. 1, 2007).

Page 13

The Individual Tax Processing Engine Project Is Making Progress

readable Java code. We concluded that the ITPE Java code we reviewed with regards to
declaration and statement controls aligns with the IRM and best practices.

The IRM and industry best practice guidelines20 identify numerous practical techniques
and quantifiable metrics to be followed. Elements described within the guidelines
include but are not limited to programmers avoiding files longer than 2,000 lines as they
are cumbersome for other programmers to follow. Programmers should break LOC at
column 100 to maintain readability. Code within all source files are to begin with a
C-style comment that lists the class name, version information, and date. Comments
serve as a mechanism to provide an overview and additional information of Java code
that is not readily available in the written code. According to the IRS, the existence of
Java LOC in excess of 100 characters and files in excess of 2,000 LOC as well as the lack
of opening comments do not affect the quality of the code or have any impact on the
code at runtime, but these deviations from best practices could make future
maintenance inefficient.

20 Sun Microsystems, Java Code Conventions (Sept. 12, 1997).

Page 14

The Individual Tax Processing Engine Project Is Making Progress

Appendix I

Detailed Objective, Scope, and Methodology

Our overall objective was to determine whether the IRS is effectively and efficiently managing
the CADE 2 program’s ITPE project with a focus on velocity estimates and development. To
accomplish our objective, we:

• Evaluated the challenges causing the ITPE project to not meet the planned velocity
metrics by 1) comparing the IRMs and other guidance to the IRS’s actual processes for
estimating and managing Agile development projects and 2) determining whether these
processes were effective.

• Evaluated the effectiveness of the ALC to Java conversion process by 1) reviewing the
IRS’s methodology for researching and selecting approaches for converting ALC to Java
and 2) determining whether the completed Java source code followed best practices and
procedures.

Performance of This Review
This review was performed with information obtained from the Information Technology
organization at the New Carrollton Federal Building located in New Carrollton, Maryland, during
the period November 2019 through June 2020. We conducted this performance audit in
accordance with generally accepted government auditing standards. Those standards require
that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a
reasonable basis for our findings and conclusions based on our audit objectives. We believe
that the evidence obtained provides a reasonable basis for our findings and conclusions based
on our audit objectives.

Major contributors to the report were Danny R. Verneuille, Assistant Inspector General for Audit
(Security and Information Technology Services); Jena Whitley, Director; Michael Mohrman, Audit
Manager; Tina Wong, Lead Auditor; and Nicholas Reyes, Senior Auditor.

Internal Controls Methodology
Internal controls relate to management’s plans, methods, and procedures used to meet their
mission, goals, and objectives. Internal controls include the processes and procedures for
planning, organizing, directing, and controlling program operations. They include the systems
for measuring, reporting, and monitoring program performance. We determined that the
following internal controls were relevant to our audit objective: policies, procedures, and best
practices related to estimating software development time, monitoring information technology
projects, developing Java code, and researching and selecting approaches for converting ALC to
Java. We evaluated these controls by interviewing IRS employees and contractors, evaluating
status reports, analyzing a judgmental sample1 of Java files, and reviewing other relevant project
documentation.

1 A judgmental sample is a nonprobability sample, the results of which cannot be used to project to the population.

Page 15

The Individual Tax Processing Engine Project Is Making Progress

Appendix II

Evolution of Individual Tax Processing Engine Velocity

Source: CADE 2 and ITPE Overview dated July 17, 2019. DAL = Data Access Layer.

Page 16

The Individual Tax Processing Engine Project Is Making Progress

Appendix III

Velocity Confidence Milestones and Lines of Code Completed

Product
Increment

Product
Increment Dates

Velocity
Confidence
Milestone

Actual ALC
LOC

Completed

Product
Increment
Goal Met?

1 01/29/2018 – 04/06/2018 1,000 1,005 Yes

2 04/12/2018 – 06/19/2018 3,500 1,824 No

3 06/20/2018 – 08/28/2018 7,000 4,179 No

4 08/29/2018 – 11/06/2018 4,000–5,000 4,032 Yes

5 11/07/2018 – 02/05/2019 5,000–6,500 5,048 Yes

6 02/06/2019 – 04/16/2019 6,000–7,500 3,786 No

7 04/17/2019 – 06/25/2019 7,500–11,000 4,570 No

8 06/26/2019 – 09/03/2019 8,500–12,500 538 No

 Totals 42,500 24,982

Source: ITPE Status reports and the CADE 2 Program Management Office Trajectory
Model dated November 14, 2019.

Page 17

The Individual Tax Processing Engine Project Is Making Progress

Appendix IV

Additional Information on Key Data
for Updating the Trajectory Model

Source: Provided by ITPE Project Management on January 15, 2020. AD = Applications Development;
PI = Product Increment; SAT = Systems Acceptance Testing.

Page 18

The Individual Tax Processing Engine Project Is Making Progress

Appendix V

Management’s Response to the Draft Report

Page 19

The Individual Tax Processing Engine Project Is Making Progress

Appendix VI

Glossary of Terms

Term Definition

Building Block A grouping of ALC LOC with common functionality.

Data Access Layer
Code or part of a software application that connects directly to a database.
It bridges the gap between the application and the database.

Data-Centric Refers to a focus on the specific data relevant to a given task.

Fiscal Year
Any yearly accounting period, regardless of its relationship to a calendar
year. The Federal Government’s fiscal year begins on October 1 and ends
on September 30.

Individual Master File
The IRS database that maintains transactions or records of individual tax
accounts.

Java Runtime
Environment

A software package that contains what is required to run a Java program.

Legacy
In the context of computing, it refers to outdated computer systems,
programming languages, or application software that are used instead of
more modern alternatives.

Logic Harvesting
Analyzing IMF Assembly Code to understand and document the business
logic and structure.

Refactoring
The process of clarifying and simplifying the design of existing code,
without changing its behavior.

Relational Database
A collection of data items organized as a set of formally described tables
from which data can be accessed or reassembled in many different ways
without having to reorganize the database tables.

Scenario
Defines an end to end set of building blocks that implement a business
result.

Self-Modified Code Code that alters its own instructions while it is executing.

Target State Architecture
Provides capabilities that will allow direct visibility and access to taxpayer
account detail on a near–real-time basis and furthers the overarching effort
to retire the IMF.

Technical Enabler Required Java program components not related to ALC LOC.

Technical Framework
Implements a modern layered architecture which provides the foundational
software, data access, tools and common code needed to implement
features from scenarios.

Technical Rules Language

A script/procedure language specifically designed to capture ALC
constructs and provide a separation between ALC data and program flows,
and to provide limited Java functions and class definitions to facilitate
translation.

Page 20

The Individual Tax Processing Engine Project Is Making Progress

Term Definition

Trajectory Model
Captures the progress on the LOC and framework that need to be
completed and projects future conversion velocity based on factors that
affect development.

Transition State
An intermediary state for the CADE 2 system, delivering a set of
functionality.

Velocity
Measurement of how much work can be completed in each product
increment iteration.

Velocity Confidence
Milestone

A goal established for converting ALC LOC to Java during a product
increment.

Page 21

The Individual Tax Processing Engine Project Is Making Progress

Appendix VII

Abbreviations

ALC Assembly Language Code

ATT Auto-Translator Tool

CADE Customer Account Data Engine

IMF Individual Master File

IRM Internal Revenue Manual

IRS Internal Revenue Service

ITPE Individual Tax Processing Engine

LOC Lines of Code

	Table of Contents
	Background
	Results of Review
	A Scenario-Based Approach Was Adopted
	In September 2017, the IRS documented its scenario-based approach to convert legacy ALC to Java. This approach uses business scenarios based on IMF business transactions to incrementally implement IMF functionality into an end-to-end solution. This ...
	The Individual Tax Processing Engine Project Is Effectively Monitored
	An Updated Process Is Used to Measure Project Progress
	Performance of This Review
	Internal Controls Methodology

